Exercice de synthèse (solution) |
|
|
|
|
|
|
|
|
Paramètres : |
|
|
coût de passation d'une
commande |
a |
10 |
|
coût unitaire |
u |
100 |
|
taux de possession |
r |
0,2 |
|
taux de service en % |
t |
95 |
correspond à F(u) =
0.95 dans la table de la loi |
|
|
|
normale centrée réduite |
|
Historiques |
|
|
|
Historique des consommations
mensuelles |
|
|
|
mois 1 |
350 |
|
|
mois 2 |
310 |
|
|
mois 3 |
250 |
|
|
mois 4 |
280 |
|
|
mois 5 |
320 |
|
|
mois 6 |
290 |
|
|
|
|
Historique
des derniers délais d'approvisionnement |
|
|
|
délai 1 |
10 |
|
|
délai 2 |
12 |
|
|
délai 3 |
5 |
|
|
délai 4 |
10 |
|
|
délai 5 |
11 |
|
|
délai 6 |
12 |
|
|
|
Tarif dégressif |
|
|
|
|
|
Nouveau coût unitaire |
u' |
85 |
|
Quantité minimum |
Q' |
300 |
|
|
|
Calculs |
|
|
Consommation moyenne
mensuelle |
Cm |
300 |
|
Demande annuelle |
D |
3600 |
"300*12" |
|
|
|
|
Quantité économique de
réapprovisionnement |
Q* |
60 |
"racine (
2*10*3600/(100*0.2)" |
|
|
|
|
Ecart type mensuel des
consommations |
σx |
34,64101615 |
|
délai moyen en jours |
dj |
10 |
|
délai moyen en mois |
dm |
0,454545455 |
"en supposant 22 jours
ouvrables par mois" |
|
Ecart type pour cette période
de réappro |
σx,d |
23,35496832 |
"=σx*dm" |
|
|
|
|
|
Ecart type des délais d'appro
en jours |
σpj |
2,607680962 |
|
consommation journalière
moyenne |
Cjm |
13,63636364 |
"=Cm/22 |
|
Ecart type des délais d'appro
en pièces |
σpp |
35,55928585 |
"=σpj*Cjm" |
|
|
|
|
|
Ecart type global |
σ |
42,54312348 |
"=racine(σx,d²+σpj²)" |
|
Coéficient de couverture |
k |
1,644853476 |
correspond à u de la table de la loi
normale |
|
|
|
|
Stock de sécurité |
Ss |
70 |
"=σ*k" |
|
|
|
|
Coût total annuel avec u et
Q* |
Ct |
362600 |
"coût d'achat+coût de
lancement+coût de possession" |
Coût total annuel avec u' et
Q' |
Ct' |
309860 |
|
|
Si acceptation du tarif
dégressif |
|
GAIN
= 52740 |
|
|
|
|
|
|
|
|
|